登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入   新用戶註冊
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / 物流,時效:出貨後2-4日

2025年05月出版新書

2025年04月出版新書

2025年03月出版新書

2025年02月出版新書

2025年01月出版新書

2024年12月出版新書

2024年11月出版新書

2024年10月出版新書

2024年09月出版新書

2024年08月出版新書

2024年07月出版新書

2024年06月出版新書

2024年05月出版新書

2024年04月出版新書

『簡體書』机械系统RBF神经网络控制:设计、分析及MATLAB仿真

書城自編碼: 2056074
分類: 簡體書→大陸圖書→計算機/網絡人工智能
作者: 刘金琨
國際書號(ISBN): 9787302302551
出版社: 清华大学出版社
出版日期: 2013-03-01
版次: 1 印次: 1

書度/開本: 大32开 釘裝: 软精装

售價:NT$ 921

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
经济运行的逻辑(精装)
《 经济运行的逻辑(精装) 》

售價:NT$ 505.0
文化中国研究丛书 公众舆论与北洋外交
《 文化中国研究丛书 公众舆论与北洋外交 》

售價:NT$ 281.0
帝国主义(汉译名著19)
《 帝国主义(汉译名著19) 》

售價:NT$ 281.0
何以为父正版何为人父爸爸的高度决定孩子的起点培养独立自信自律阳光的儿女不打不骂不吼不叫培养男孩女孩育儿书籍
《 何以为父正版何为人父爸爸的高度决定孩子的起点培养独立自信自律阳光的儿女不打不骂不吼不叫培养男孩女孩育儿书籍 》

售價:NT$ 184.0
摇曳的名分:明代礼制简史
《 摇曳的名分:明代礼制简史 》

售價:NT$ 449.0
文化中国研究丛书 清末的下层社会启蒙运动:1901-1911
《 文化中国研究丛书 清末的下层社会启蒙运动:1901-1911 》

售價:NT$ 352.0
巴赫传 时代 观念和最爱的书
《 巴赫传 时代 观念和最爱的书 》

售價:NT$ 500.0
意料之内:有限的认知与不确定的环境
《 意料之内:有限的认知与不确定的环境 》

售價:NT$ 301.0

建議一齊購買:

+

NT$ 621
《RBF神经网络自适应控制MATLAB仿真(电子信息与电气工程》
+

NT$ 463
《神经·模糊·预测控制及其MATLAB实现(第3版)(编程简单》
+

NT$ 353
《系统辨识理论及Matlab仿真》
+

NT$ 561
《滑模变结构控制MATLAB仿真(第2版)(电子信息与电气工程》
目錄
Contents
Chapter 1 Introduction
1.1 Neural Network Control
1.1.1 Why Neural Network Control?
1.1.2 Review of Neural Network Control
1.1.3 Review of RBF Adaptive Control
1.2 Review of RBF Neural Network
1.3 RBF Adaptive Control for Robot Manipulators
1.4 S Function Design for Control System
1.4.1 S Function Introduction
1.4.2 Basic Parameters in S Function
1.4.3 Examples
1.5 An Example of a Simple Adaptive Control System
1.5.1 System Description
1.5.2 Adaptive Control Law Design
1.5.3 Simulation Example
References
Appendix
Chapter 2 RBF Neural Network Design and Simulation
2.1 RBF Neural Network Design and Simulation
2.1.1 RBF Algorithm
2.1.2 RBF Design Example with Matlab Simulation
2.2 RBF Neural Network Approximation Based on Gradient
Descent Method
2.2.1 RBF Neural Network Approximation
2.2.2 Simulation Example
2.3 Effect of Gaussian Function Parameters on RBF
Approximation
2.4 Effect of Hidden Nets Number on RBF Approximation
2.5 RBF Neural Network Training for System Modeling
2.5.1 RBF Neural Network Training
2.5.2 Simulation Example
2.6 RBF Neural Network Approximation
References
Appendix
Chapter 3 RBF Neural Network Control Based on Gradient Descent
Algorithm
3.1 Supervisory Control Based on RBF Neural Network
3.1.1 RBF Supervisory Control
3.1.2 Simulation Example
3.2 RBFNN Based Model Reference Adaptive Control
3.2.1 Controller Design
3.2.2 Simulation Example
3.3 RBF Self-Adjust Control
3.3.1 System Description
3.3.2 RBF Controller Design
3.3.3 Simulation Example
References
Appendix
Chapter 4 Adaptive RBF Neural Network Control
4.1 Adaptive Control Based on Neural Approximation
4.1.1 Problem Description
4.1.2 Adaptive RBF Controller Design
4.1.3 Simulation Examples
4.2 Adaptive Control Based on Neural Approximation with
Unknown Parameter
4.2.1 Problem Description
4.2.2 Adaptive Controller Design
4.2.3 Simulation Examples
4.3 A Direct Method for Robust Adaptive Control by RBF
4.3.1 System Description
4.3.2 Desired Feedback Control and Function Approximation
4.3.3 Controller Design and Performance Analysis
4.3.4 Simulation Example
References
Appendix
Chapter 5 Neural Network Sliding Mode Control
5.1 Typical Sliding Mode Controller Design
5.2 Sliding Mode Control Based on RBF for Second-Order
SISO Nonlinear System
5.2.1 Problem Description
5.2.2 Sliding Mode Control Based on RBF for Unknown f.
5.2.3 Simulation Example
5.3 Sliding Mode Control Based on RBF for Unknown f. and
g.
5.3.1 Introduction
5.3.2 Simulation Example
References
Appendix
Chapter 6 Adaptive RBF Control Based on Global Approximation
6.1 Adaptive Control with RBF Neural Network Compensation
for Robotic Manipulators
6.1.1 Problem Description
6.1.2 RBF Approximation
6.1.3 RBF Controller and Adaptive Law Design and
Analysis
6.1.4 Simulation Examples
6.2 RBF Neural Robot Controller Design with Sliding Mode
Robust Term
6.2.1 Problem Description
6.2.2 RBF Approximation
6.2.3 Control Law Design and Stability Analysis
6.2.4 Simulation Examples
6.3 Robust Control Based on RBF Neural Network with
HJI
6.3.1 Foundation
6.3.2 Controller Design and Analysis
6.3.3 Simulation Examples
References
Appendix
Chapter 7 Adaptive Robust RBF Control Based on Local
Approximation
7.1 Robust Control Based on Nominal Model for Robotic
Manipulators
7.1.1 Problem Description
7.1.2 Controller Design
7.1.3 Stability Analysis
7.1.4 Simulation Example
7.2 Adaptive RBF Control Based on Local Model
Approximation for Robotic Manipulators
7.2.1 Problem Description
7.2.2 Controller Design
7.2.3 Stability Analysis
7.2.4 Simulation Examples
7.3 Adaptive Neural Network Control of Robot Manipulators
in Task Space
7.3.1 Coordination Transformation from Task Space to Joint
Space
7.3.2 Neural Network Modeling of Robot Manipulators
7.3.3 Controller Design
7.3.4 Simulation Examples
References
Appendix
Chapter 8 Backstepping Control with RBF
8.1 Introduction
8.2 Backstepping Control for Inverted Pendulum
8.2.1 System Description
8.2.2 Controller Design
8.2.3 Simulation Example
8.3 Backstepping Control Based on RBF for Inverted
Pendulum
8.3.1 System Description
8.3.2 Backstepping Controller Design
8.3.3 Adaptive Law Design
8.3.4 Simulation Example
8.4 Backstepping Control for Single Link Flexible Joint
Robot
8.4.1 System Description
8.4.2 Backstepping Controller Design
8.5 Adaptive Backstepping Control with RBF for Single Link
Flexible Joint Robot
8.5.1 Backstepping Controller Design with Function
Estimation
8.5.2 Backstepping Controller Design with RBF
Approximation
8.5.3 Simulation Examples
References
Appendix
Chapter 9 Digital RBF Neural Network Control
9.1 Adaptive Runge-Kutta-Merson Method
9.1.1 Introduction
9.1.2 Simulation Example
9.2 Digital Adaptive Control for SISO System
9.2.1 Introduction
9.2.2 Simulation Example
9.3 Digital Adaptive RBF Control for Two Link
Manipulators
9.3.1 Introduction
9.3.2 Simulation Example
References
Appendix
Chapter 10 Discrete Neural Network Control
10.1 Introduction
10.2 Direct RBF Control for a Class of Discrete-time
Nonlinear System
10.2.1 System Description
10.2.2 Controller Design and Stability Analysis
10.2.3 Simulation Examples
10.3 Adaptive RBF Control for a Class of Discrete-Time
Nonlinear System
10.3.1 System Description
10.3.2 Traditional Controller Design
10.3.3 Adaptive Neural Network Controller Design
10.3.4 Stability Analysis
10.3.5 Simulation Examples
References
Appendix
Chapter 11 Adaptive RBF Observer Design and Sliding Mode
Control
11.1 Adaptive RBF observer design
11.1.1 System Description
11.1.2 Adaptive RBF Observer Design and Analysis
11.1.3 Simulation Examples
11.2 Sliding Mode Control Based on RBF Adaptive
Observer
11.2.1 Sliding Mode Controller Design
11.2.2 Simulation Example
References
Appendix
Index

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 台灣用户 | 香港/海外用户
megBook.com.tw
Copyright (C) 2013 - 2025 (香港)大書城有限公司 All Rights Reserved.